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Abstract--An orthogonal expansion technique for solving some heat- or mass-transfer problems in 
counterflow systems is developed and applied to two idealized transport problems. The method of 
solution is based on Sturmian theory and requires both positive and negative eigenvalues for 
completeness. Local and mean Nusselt numbers are reported as functions of the parameters of the 
two systems. 

An iterative finite difference method for solving the same problems is described and the results of 
the two methods compared. 

NOMENCLATURE 

distance between outer parallel plates; 
expansion coefficients; 
diffusivity ; 
distance between outer parallel plates 
in Fig. 1; 
acceleration of gravity; 
static head difference; 
mass- or heat-transfer coeficient ; 
dimensionless length, [I/(a/2)]/Pe for 
ice washing, or [I/@/4)]/& for heat 
exchanger ; 
length; 
dimensionless constant, 

bd4v921/cwvJ~ 
Nusselt number ; 

Net, mean Nusselt number defined bv 
equation (34); 

Pe, 
r, 
0, 

T, 
TO, 

Tl, 

U, 

v, 
ub, 

PCclet number ; 
radial coordinate; 
position of the plane of zero velocity in 
Fig. 1; 
temperature or concentration; 
temperature or concentration at 2 = 0 
and t-c < r < d; 
temperature or concentration at z = I 
and0 <r<rt; 

dimensionless velocity, v/vb for ice 
washing, or v,%,~~ for heat exchanger; 
velocity; 
plate velocity for ice washing; 

Vmax, maximum velocity of slower stream 
for heat exchanger; 

w/b, ratio of wash water to brine rates; 
x, dimensionless axial coordinate, 

[z/(u/2)]/Pe for ice washing, or 
[z~(~/4)]/~e for heat exchanger; 

Y, dimensionless radial coordinate, rl(u~2) 
for ice washing, or r,&z/4) for heat 
exchanger ; 

2, axial coordinate. 

Greek symbols 
A, dimensionless interfacial position, rg/d; 
0, dimensionless concentration or tem- 

perature, (T - To)/(Tz - TO); 
A 12, eigenvalue ; 

P. viscosity; 
Pt fluid density. 

INTRODUCTION 

IN RECENT years a wide variety of heat- and mass- 
transfer processes in bounded conduit flows 
have been successfully reduced to Sturm- 
Liouville systems and studied as such. Informa- 
tion gained from this work has markedly 
increased understanding of transport processes 
in systems where the axial velocity is unidirec- 
tional. Countercurrent processes, however, are 
f~dament~ly different since the velocity must 
change sign. Also, such problems are neither 
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fully open-ended nor completely bounded in 
the conventional sense. This paper presents a 
method of solving the countercurrent problem 
in its simplest form; extention to a wider range 
of practical problems is possible and will be the 
subject of later papers. 

Rigorous mathematical proofs of the existence 
of solutions to counterflow problems, or of the 
convergence of the type of orthogonal function 
expansions used in the present study to solve 
them, are not available. Consequently, in order 
to test the validity of the method developed here, 
and to extend the results to cases where the 
expansion is inconvenient, a finite difference 
iterative procedure which is a modification of 
King’s [4] recent work, was used. Although no 
fully satisfactory formal method of interation 
which would handle all of the problems was 
found, it was possible to establish very good 
agreement between the finite difference approach 
and the orthogonal function expansion for all 
cases investigated. 

THEORETICAL DEVELOPMENT 

The essential features of the general problem 
studied are shown on Fig. 1. It is seen that the 
velocity, o(r), is an arbitrary continuous function 
of Y which assumes both positive and negative 
values. Also, the dependent variable is specified 
at z = I over the interval 0 < r < ri and at 
z = 0 over the interval rt < r < d. The interface 

Dependent variable unspecified aver 

the interval OS rsr; at I= 0 
d 

( 1 iq 21i+yafatYP, 

Dependent variable unspecified aver 

-he mterval I;sr5d at z=L 

FIG. 1. Schematic diagram of counterflow problem. 

at r = rt may be a solid boundary having no 
resistance or it may be just a plane of zero 
velocity, but in any event it is assumed to be a 
plane which effectively separates the flow into 
two streams. In one stream the velocity is 
positive everywhere and in the other it is 
negative everywhere with respect to a stationary 
frame of reference. 

The most important simplifying assumptions 
made in this analysis are: 

1. 

2. 

3. 

4. 

5. 

The velocity field is fully developed in that 
it is a function of r only. 

The flow is laminar. 

Molecular diffusion or conduction in the 
axial direction is negligible compared with 
convection. 

Physical properties are constant and the 
same in both streams. 

There is no transport resistance or capaci- 
tance in the plane of zero velocity which 
separates the streams. 

To reduce the number of parameters involved 
it is further stipulated that no heat or mass is 
transferred across the outer boundaries of the 
system at r = 0 and r = d, and that each stream 
enters with a uniform temperature or concentra- 
tion profile. 

A few comments regarding assumptions four 
and five seem in order. First, it is precisely 
when the properties of two countercurrent 
streams are similar that we know least about 
them since the idea of a controlling resistance 
has no validity whatsoever. Secondly, in 
numerous heat- and mass-transfer applications, 
but by no means in all cases, the interfacial 
resistance can be considered negligible. There- 
fore, it seems quite reasonable to make these 
assumptions in a first attempt at solving analytic- 
ally some counterflow transport processes. 

With the dimensionless axial and radial 
distances 

z 
‘=i”e.d 

y = r/d 

the entire temperature or concentration field 
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is described by the following system of equations 

S(O,y)=O; d ey<1 (4) 

0(&y)= 1; O<y<d (5) 

where 8 is the dimensionless concentration or 
temperature, 8 = (T - To)&? - To), and 
LI = ri/d. Using separation of variables leads to 

K(x) = exp [-- h.4 

Y;(y) + u4.J.g Y,(y) = 0; 0 6 y < 1 (6) 

Y,‘(O) = 0 (7) 

Y;(l) = 0 (8) 

This is a special case of the Sturm problem for 
which it has been shown ]3] that when Z&V) 
changes sign over the interval in question that 
both a positive and a negative set of real eigen- 
values which have the limit points + co and 
- co respectively, ’ exist. Furthermore, with 
boundary conditions given by equations (7) and 
(8), Bother [2] has shown that the smallest 
eigenvalue in absolute value of either or both 
sets will be zero depending on the value of F, 
where 

F= er@) dy 

IfF=O,h$= h;=O,ifF>O,h,f=O,and 
if F < 0, A; = 0. Thus, for counterflow systems 
it is necessary to find a convergent series in 
both positive and negative eigenvalues, since 
each set must be retained if the orthogonal 
function expansion ,is to be complete. The 
solution is of the form 

which will be written here as simply 

To derive expressions for the expansion 
coefficients the entrance conditions, equations 
(4) and (5), are rewritten as 

@(O,Y) = 1 f(y); OGY GA 
o. d<YYl 

(11) 
9 

B(L,y)= l; 
i 

ObYGd (12) 

pdv); d<YYl 

where 

fW = 2 B, Y*(v); 0 <Y <A (13) 
cl=0 

PQ = ~~o~4exp[-WI Y&J); ~GY G 1 (14) 

Equations (13) and (14) follow from the form 
of the solution given by equation (10). If one 
notes that the Yn’s are orthogonal with respect 
to u@) over (0, I) and that 

0 CL Y) = so& exp l-U1 Y&Y) (16) 

then it can be seen that orthogonal expansions 
can be written at both ends of the model. 
Multiplying both sides of equation (15) by 
u@) Ym(y) dy and integrating over (0, 1) yields 

i ~0 0 (0, Y) YmO dy = 

$ Bn j 4~) Y&l S&9 dy (17) 
1L=o 0 

As a consequence of the orthogonality con- 
ditions, the right-hand side of equation (17) is 
zero unless m = n. Therefore 
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Similarly at x = L, 

B 
12 

= exp [h 
12 
Ll d u(y) 0 (~5 y) Y%(y) dy 

,j u(y) [ LW12 dv 
(19) 

But since 0 (0, y) = 0, A < y < 1, 

1. 
d u(y) 0 (0, y) Y&y) dy = j u(y)f(y) m(v) dy 

or, in view of equation (13) 

[ U(Y) 0 (0, Y) YnO dy = 

% B, f ~0 Y,(Y) Ye dy (20) 
q=lJ 

The integral in the numerator of equation (19) 
can also be rewritten by using equations (12) 
and (14) as 

1 u(y) 0 6% Y) m(v) dy = l U(Y) Ye dy + 

? &I exp [-WI ? U(Y) Y*(Y) Y%(Y) dy (21) 
q=O A 

The right-hand side of equations (18) and (19) 

are equal and thus by equating these two 
expressions for Bn and substituting equations 
(20) and (21) in the result, after some simple 
rearrangement, one gets 

exp [MJ 4 U(Y) Y&l dy = 
0 

Equation (22) applies for all values of n for 
both positive and negative sets of eigenvalues 
and therefore constitutes a set of linear equa- 
tions, which defines the B,. Thus, to find the 
expansion coefficients a set of simultaneous 
equations must be solved. Note that in this 
case each successive term added to the solution 
has an effect on the preceding expansion 
coefficients, which is not the case in the ordinary 
use of orthogonal functions such as in the 
Graetz problem. 

Standard simplifying techniques using 
equations (6) to (8) can be employed to obtain 
expressions for the integrals in equation (22). 
Thus, for h, # 0, equation (22) becomes 

exp [An Ll - 
A, 

Y;(A) = 

av'(i) 
2 Y;(A) 2 (A) - 2 Yn(A) 2 (A) + Yn(1) -+ ,q=n I 

(23) 

* 
12 n n i 

where the primes refer to differentiation with respect to y. For X,+ = 0 

[ U(Y) dv = Bof {% 4~) dy - / U(Y) dy 1 + 

$- Bj- EC?’ - i.1 + exp (--X,+01 - qgoB,y $ I.1 + exp (-- kgL)I (24) 
q=1 Q 9 
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HOD OF SOLUTION 

To deal with any velocity profile, which is an 
arbitrary function of y, a Rungs-Kutta numerical 
integration of equation (6) was used. Without 
loss of generality it can be assumed that m(O) = 
1. This condition along with equation (7) and 
an initial guess of the eigenvalue form a starting 
point for the integration. Repeated integrations 
with adjustments of the eigenvalue by a false 
position method were made until equation (8) 
was satisfied. Values of the derivatives with 
respect to ;1, in equation (23) were also found 
by this method after differentiating equation 
(6) with respect to X,. A Gauss-Jordan reduc- 
tion was used to solve the set of simultaneous 
equations generated by equations (23) and (24). 
All calculations were made on an IBM 7070 
computer. 

PHYSICAL PROBLEMS 

The mathematical problem and the method 
for solving it, which were discussed previously, 
are sufficiently general to be useful in analysing 
a number of rather interesting physical problems. 
The most obvious application of the foregoing 
analysis is the counterflow heat exchanger, but 
before considering this, a simplified version 
of an interesting mass-transfer problem which 
arises in the freezing process for demineralizing 
sea water shall be discussed. 

An important step in the freezing process is 
the steady-state countercurrent washing of 
ice particles with fresh water to remove brine 
as described by Barduhn [I]. This occurs in a 
vertical column equipped to feed a slurry of ice 
and brine at the bottom and fresh water at 
the top. As an analogy to the flow in porous 
media which occurs in the freezing process, 
consider instead that flow takes place between 
infinitely wide moving flat plates, with a dis- 
tance between plates on the order of an ice 
particle diameter, a. Each plate might be con- 
sidered part of a continuous belt which moves 
on rollers at a constant velocity and the bottom 
of the two belt systems, which constitute the 
two moving plates, is immersed in a tank in 
which the mean brine concentration is maintained 
constant. Brine adheres to the plate surfaces 
as they move out of the brine solution. The 

3F 

velocity of the plates, uti, is representative of the 
ice bed velocity up the column. The space 
between plates is completely filled with fluid 
and part of the fluid moves upward with the 
plates. Fluid around the centerline moves 
downward but is replaced continuously at the 
top so that the space between plates is always 
full. A pressure gradient may exist in the fluid 
which will be measured by a static head differ- 
ence, h. Flow is laminar and symmetric about 
the centerline and oniy one-half of the model 
need be considered. Thus, the velocity distribu- 
tion is given by 

where 

u(y) = 1 - Nfl -ys> (25) 

Y r =- 
aI2 

N = Pgh wQ2 
2&b 

and equation (1) describes the mass transfer in 
this system. 

The value of N determines the position of the 
interface between the two streams. That is, 
the point of zero velocity occurs at 

Ll = [I - (l/N)]1’2 

The net volumetric flow rate is representediby 
F, where 

F= i.(y), 
0 

In practical applications, F is close to zero 
(if F = 0, N = l-5, and d = 0+77), with F < 0 
indicating a net flow down the column. Table 1 
shows the rates which have been investigated 
with w/b defined as the ratio of wash water to 
brine rate. 

Table 1. Flow rate parameters 

N A F 

l-73 0.65 -0*155 
l-33 0.5 0~111 
1.14 0.35 0.24 

w/b 

1.95 

00::11 
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tc 

v,’ 

FOR N= 1.32 

-I( 

FIG. 2. Positive eigenfunctions. 

Several eigenvalues and eigenfunctions have 
been calculated for each value of N listed in 
Table 1. These eigenvalues and the other 
parameters necessary to calculate transport 
coefkients are tabulated in Table 2. Figures 
2 and 3, for N = l-33, illustrate typical behavior 
of the eigenfunctions. Both the positive and 
negative sets have characteristics which hinder 
the calculation of higher order functions. 
Notice the tremendous variations in magnitude 
of the higher order positive functions and note 
also that the higher order negative functions 
approach zero closer and closer to the interface. 
It is also worth noting that eigenfunctions 
corresponding to the positive set of eigenvalues 
are periodic in the region of positive velocity 
and eigenfknctions of the negative set are 
periodic in the region of negative velocity as 

i i j ; j A;=-@68774 

13 _.&_~..A; =-299998 

/ A; :-971.999 

I.0 

~ 

I I_.._ . -t_---- 

!y; 

ocj ..--t- i__; ; 

Y 

I 

ii 

Y 

0 

FIG. 3. Negative eigenfunctions. 

required by Sturm’s comparison theorems. 
Furthermore, this seems to be intimately related 
to the approximation of the entrance condi- 
tions. The addition of more negative terms to 
the series improves the fit in the region of 
negative velocity while the addition of more 
positive terms to the series has a greater effect 
in the region of positive velocity. 

Figure 4 illustrates the improvement of 
entrance conditions obtained by the addition 
of more terms to the series. As in all problems 
solved with orthogonal function expansions 
an accurate description of the region very close 
to the entrance, or in this case at both ends of 
the model, requires a large number of terms in 
the series. It is for this reason that asymptotic 
expressions for the large eigenvalues and cor- 
responding eigenfknctions are very useful. 

The primary interest in solving transport 
problems is in obtaining an indication of 
transfer rates. For this purpose a mass-transfer 
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. 

I.0 

Fro. 4. Effect of increasing number of terms in 
eigenfunction expansion on fitting end conditions 

for the case L = 0.05, N = l-33. 

coefficient, K, is defined as 

where A& is the difference in bulk concentra- 
tions of the two streams. The Nusselt number 
thus is given by 

To derive an expression for the Nusselt number 
in terms of expansions consider ‘\Y = 0 (a 
similar procedure applies for A; = 0), and return 
to using the form of solution shown in equation 
(9). The difference in bulk concentrations, 
A6s is given by 

An expression for the integrals involving 19 (x, y) 
above is now derived by substituting equation 
(9) for 8 (x, y) and simpiifying. 

Thus, 
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Therefore, since YO+‘(A) is zero, the Nusselt number is given by 

The variation of the Nusselt number with x is given in Table 3. Notice that the values given for 
x = 0 and x = L are not expected to be accurate. 

Table 3. Nusselt number variation with N, L and x 

N L Nusselt number 

1.73 
1.73 
1.73 
1.73 

1.33 
1.33 
1.33 
1.33 

1.14 
1.14 
1.14 
1.14 

-x=0 
L 

; = 0.2 ; = 0.4 ;= 0.6 ; zz 0.8 ; = 1.0 

0405 5.18 4.03 3.66 3.67 3.93 4.47 
0.01 3.31 3.01 2.88 2.96 3.30 4.19 
0.05 3.63 2.06 2.09 2.18 2.43 3.16 
0.1 2.20 2.02 2.02 2.05 2.21 3.11 

OdXl5 3.92 3.25 3.04 3.11 3.39 4.0 
0.01 4.10 2.46 2.27 2.27 2.42 4.38 
0.05 3.53 1.99 1.94 1.93 1.96 3.47 
0.1 3.66 1.95 1.93 1.93 1.93 2.94 

0.005 6.75 3.78 2.91 2.65 2,75 3.61 
0.01 5.75 3.14 2.56 2.38 2.33 2.74 
0.05 6.31 2.15 2.15 2.15 2.15 3.55 
0.1 2.15 2.15 2.15 2.15 2.15 2.15 

Table 4. Parameters for countercurrent heat exchanger 

&I+ 
n hl+ Yn+‘(A) 

L = 0.01 L = 0.05 L = 0.1 

0 0 0 - 4.44005 - 3.33931 -2.61323 
1 89.9397 68.2672 -5.5637 x 10-s -2.45692 x 10-3 -4.27125 x 10-s 
2 284.222 1.90287 x lo3 -2.63944 x 10-4 -2.91375 x 10-4 - 

&- 
n &l- Yn-‘(A) - 

L = 0.01 L = 0.05 L = 0.1 

0 - 1.34714 -0.218101 5.50652 4.15168 3.24034 
1 -110.158 2.02474 -6.83725 x 1O-2 -4.22447 x 10-4 -2.88601 x lO-‘j 
2 - 344.721 - 2.98128 -8.43787 x 10-4 -7.00989 x 10-Q - 
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One of the most interesting and useful heat 
transfer devices is the counterflow heat exchanger 
which has been employed for many years in 
industrial applications, but has not yet been 
successfully analysed theoretically. The present 
method enables one to analyse at least a simple 
version of the counterflow heat exchanger. 
It is assumed that the system consists of three 
plates, that the outer two are perfectly insulated, 
and that the inner plate has no resistance. The 
same fluid is in Iaminar flow on both sides of the 
inner plate but the flows are in opposite direc- 
tions. This problem has been solved for equal- 
sized streams with different maximum velocities. 
If the width of each stream is a/4 and y is the 
dimensionless distance, r/(a/4), measured from 
the lower plate, then the velocity profile used 
is given by 

I 44 == Grnbx = ] 
AY - 1) ;O:,y<l 

1 11.2(y- 1)(2--y) ; 1 :‘;?I <2 

where Gmax is the maximum velocity of the 
slower stream. Table 4 lists the parameters 
necessary to calculate the transfer coefficients 
and Table 5 gives the Nusselt number variation 
for this system. 

FINITE DIFFERENCE TECHNIQUE 

Since the analytical method used in solving 
these problems has not been proven in a strict 
mathematical sense, and since King [4] has 
developed a method for solution of the infinite 
stream problem which requires a reasonable 
amount of computer time, his technique has 
been modified to solve the bounded system. For 
finite difference calculations it is necessary to 

Table 5. Nusselt number tiariation with L and x 

-~- .------__- _ _p~---_-- --I “- -I:-z-z : _:z __ ____------ 

Nusselt number .=z K(af4)jD 
L _ /!a/4 --- __________~ --______ 

Pe x/L = 0 x/r. = o-2 s/L J 0.4 x/L =- 0.6 .x/L = O-8 x/L = 1.0 

0.01 I.70 168 1.67 1.67 1.68 I,71 
0.05 2.44 1.50 I ,40 1,40 1.48 252 
0.1 1.91 1.44 1-36 1.36 1.41 1.93 

FIG. 5. Schematic diagram of finite difference model. 
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consider each stream separately as illustrated in 
Fig. 5. The equations to be solved for this form 
of the problem are 

j= 1,2 (26) 

e5(“,Y5)= 1 j=2 1 O,j= 1 

, 
(27) 

g$xj, dj) = 0; j = 1.2 (28) 

81(x1,0) = f32(L - Xl, 0) (29) 

;; (Xl, 0) = - a;2 (L - Xl, 0) (30) 

The two additional conditions, equations (29) 
and (30), evolved from breaking up the problem, 
are automatically satisfied in the series solution. 
Considering Fig. 5, equation (26) for either stream 
in terms of the Crank-Nicholson implicit finite 
difference form is 

matically satisfied. As suggested by King [4] the 
derivatives at y = 0 given by 

= & (- 25 &, o + 48 es, 1 - 
5 

36 es, 2 + 16 6, 3 - 3 es, 4) 

are then checked to test the degree to which they 
satisfy equation (30). If they differ by more than 
a pre-assigned allowable error, the interfacial 
concentration or temperature at that point is 
adjusted and the concentration distribution 
recalculated. This procedure is repeated until 
all the derivatives agree to f8 per cent or less. 
(After convergence, an overall energy balance 
for one case checked within 3 per cent). It is 
difficult to give a general procedure for adjusting 
the interfacial 0 to speed convergence, since all 
the problems solved by this technique had 
different requirements. Examination of inter- 
mediate results and experience with the method 
proved best. Another disadvantage of this 
method when compared to the series method is 

es+l, t+l -; [i +‘ff] 8,,1,t+~,+1,t-,=2[l-~]~~,t--8,,t-1-~~,t+l (31) 

Equation (28) rewritten in difference form 
becomes 

&+l, T-t2 - &+I, T 

2Ay1 = 
0 

or 

&+l, Tf2 = &+I, T (32) 

and similarly 

&+l, M+2 = &+l, M (33) 
To solve this model, first an initial guess of 

the interfacial distribution is made (or results of 
series calculations are used). With this pre- 
scribed, the distribution of 0 in each phase or 
stream is found by starting at the end where the 
entrance value of 0 is given and then solving (5) 
the sets of simultaneous equations generated by 
equations (30), (31) and (32) by the Thomas 
method. Since the same interfacial concentration 
is used for each stream, equation (29) is auto- 

that for every combination of parameters the 
entire problem must be started over; thus, one 
uses a large amount of computer time if a wide 
range of parameters is investigated. 

Several problems, however, have been solved 
using this method for comparison with series 
results. Excellent agreement was obtained as is 
evident from Figs. 6, 7 and 8. Furthermore, this 
method has been used to investigate very small 
lengths where the number of eigenvalues re- 
quired in the analytical method becomes ex- 
cessive. Thus, Fig. 9, which shows the variation 
of a mean Nusselt number defined as 

I, 

Nu, = ; 

s 
Nu(x) dx (34) 

0 

is a combination of results of both series and 
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2 SERIES’SOLUTIO 
--- FINITE DIFF- 

0,4 -& 1 

02 im-- \\.I 1 
\ I 

0 \ j / ./-\ I .H / \ 

IINTERFACE 
\, 

0 0.2 04 06 08 I.0 
Y 

FIG. 6. Transverse dimensionless concentration 
distributions at various values of x for the case 

L = 0.05, N = 1.33. 

finite difference methods; the points at L = 0401 
come entirely from the finite difference method. 
Figure 9 also shows the mean Nusselt number for 
the counterflow heat exchanger problem dis- 
cussed previously. Both the bulk concentration 
and the mean Nusselt numbers were calculated 
by numerical integration. 

CONCLUDING REMARKS 

The problem of F = 0, that is, of no net flow, 
cannot be handled by the series expansion 

6 
z i I.0 
% 
wO.8 
0 
z 

SO.6 
0 

FIG. 6-continued. 

technique as it has been developed here. This 
case introduces an indeterminate form in 
equations (18) and (19) since when ho = 0, 
Yo = 1, and the denominators vanish. As noted 
by Bother [2] this is a situation in which an 
eigenvalue whose order of multiplicity when 
regarded as a root of the characteristic equation 
(two in this case) is not equal to the number of 
linearly independent eigenfunctions correspon- 
ding to it (one in this case). This problem can, 
however, be solved by the finite difference 
method. 



ANALYSIS OF HEAT OR MASS TRANSFER IN SOME COUNTERCURRENT FLOWS 885 

0.6 

FIG. 7. Dimensionless interfacial concentration 
distribution for the case L = @05, N = 1.33. 

- FINITE DIFFERENCE 

FIG. 8. Comparison of series and finite difference 
calculations of Nusselt number as a function of x 

for the case L = 0.05, N = 1.33. 

6 

FIG. 9. Average Nusselt numbers for countercurrent heat or mass transfer. 
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Resume-On expose une technique de developpement orthogonal pour resoudre certains problemes 
de transfert de chaleur ou de masse dans des systemes a contre-courant et on l’applique a deux prob- 
lemes de transport idealises. La methode de resolution est basee sur la theorie de Sturm et demande a 
la fois des valeurs propres positives et negatives pour etre complete. Les nombres de Nusselt locaux et 
moyens sent don&s comme des fonctions des parametres des deux systemes. 

Une methode iterative de differences finies pour rboudre les memes problemes est d&rite et les 
resultats des deux methodes sent compares. 

Zusammenfassung-Zur Liisung einiger W&me- und Stoffiibergangsprobleme in Gegenstrom- 
systemen, wird eine Reihenentwicklung nach orthogonalen Funktionen hergeleitet und auf zwei 
idealisierte Ubergangsprobleme angewandt. Die Losungsmethode beruht auf der Sturm’schen 
Theorie und erfordert zur Vollstlndigkeit sowohl positive wie such negative Eigenwerte. Lokale und 
mittlere Nusselt Zahlen werden als Funktionen der in den zwei Systemen vorkommenden Parameter 
angegeben. Zur Losung der gleichen Probleme wird ein iteratives Differenzenverfahren beschrieben 

und die Ergebnisse beider Methoden werden miteinander verglichen. 

i~HAoTaI(IIJI-Pa3pa~oTas fireTo opTorona.rrbnoro paano~ewna ana penrenmf IIeIiOTOpbIX 
3afiaY IEpeHOCa TeIUIa II MACCbI B CHCTeMaX C IlpOTIU3OTOHO7if; aTOT MeToR npHaeHes K ~BYM 
n~ea~mniposannhI%r aanavar nepeaoca. MOTOR perueIIaff OCHOBaH Ha TeopMrr mTypxa II 
Tpe6yeT~~X~O~HOTbICI~~Te~~CO~CTBeHH~X ~~A1~4~~~a~~OSIOHFHTe3II~HbIX,TBI-; 51 OTpHI@Te- 

JIbHbIX CO6CTBeHHblX ~HaqeH~~. ~O~a~b~I~e II CpeAAEe :~r~aYeH~~ ~~pI~Tep~~~ HyCCexbTa 
npezcraaaenbr I;an Qy~~iqtl~ napanleTpo3 0Benx cncTeM. 

~JIfI pemeana 3THX XFe 3aJ(aq IIpllBO~IiTCR IlTepalWoHHbI~ pa3HOCTEibII? MeTOg R AaH 
CpaBHeHIte pe:3yJlbTaTOB Or,OItX MeTOJOR. 


